Snowboarding showcase for biocomposites

17 December 2012

Innovative biocomposite materials are heading for the slopes, after engineers at the AMRC Composite Centre produced a prototype snowboard from flax, cashew nut husks and recycled plastic. The team are investigating the potential use of these biocomposites for electric vehicles and other applications.

The aerospace and automotive sectors are increasingly using composite materials for their combination of low weight and high strength, which can provide significant improvements in fuel efficiency. These materials are usually made up of carbon or glass fibres embedded in an epoxy resin derived from petrochemicals. These materials are energy-intensive to manufacture, and are not easily recyclable or biodegradable when they reach the end of their lives.

Replacing some or all of these raw materials with sustainable alternatives can significantly improve the environmental performance of composites manufacturing.

The AMRC Composite Centre investigated the use of fibres from flax and bamboo, as well as an epoxy resin derived from cashew nut husks which would normally go to waste, and produced two fairing panels for the AMRC's Mantra lorry as showpieces.

Some of the young researchers at the AMRC Composite Centre then started looking at the potential for these materials in an area of special personal interest: snowboarding. The team launched an internal project which became known as SUSC: Snowboard Using Sustainable Composites.

"Snowboards need to be stiff, strong and light, so are typically made from glass fibre or carbon fibre composite with a wooden core," says development engineer Craig Atkins. "We decided to take a look at replacing these with more sustainable materials. Flax is a relatively cheap bio-material, with good mechanical properties, and a very good candidate for use in snowboards."

The team produced two boards from flax fibres embedded in a resin containing 30 per cent of cashew shell epoxy. The core was made from recycled PET foam, derived from old plastic bottles and other waste.

One board is currently being put through its paces by one of the AMRC team, Alistair Murray, during a sabbatical in the Canadian mountains. The other is on show at the centre, having drawn interest from businesses at the Composites Engineering Show at NEC in November as well as from the extreme sports community.

The AMRC team continues to develop biocomposites for a range of transport applications. In collaboration with Performance Engineered Solutions and Teks, the team has secured funding from the Niche Vehicle Network for a new project called Elcomap (Environmentally friendly lightweight composite materials for aerodynamic body panels). Elcomap will explore the use of biocomposites for low volume components in high performance vehicles.

"There's a number of areas we need to investigate before these biocomposites can go into commercial production," says Dr Tim Swait, AMRC research engineer. "We will research how we can increase the concentration of fibres to give material properties that are at least a match for synthetic composites, and how we design the lay-up for a biocomposite component to optimise its performance. We're also investigating other techniques to improve the energy efficiency of composites manufacturing, such as microwave curing, and whether these can be applied to biomaterials."

Related News

Keeping the space industry at the cutting edge
03/08/2020
Composite engineers at the University of Sheffield AMRC were singled out for praise b …
Design and composites capabilities take spotlight at spring conference
14/05/2024
Industrial members of the University of Sheffield Advanced Manufacturing Research Cen …
Propelling air travel to a sustainable destination
18/02/2020
A £20 million project to develop lightweight propeller blades that will help th …
Hybrid composite-metal anti-roll bar technology set to revolutionise global rail and HGV sectors
12/06/2019
Research to develop a revolutionary high-performance hybrid composite-metal anti-roll …